

10.11.2021

MEMS Spatial Light Modulators for Real Holographic 3D Displays

PETER DUERR, Andreas Neudert, Christoph Hohle, Fraunhofer IPMS Hagen Stolle, Johannes Pleikies, Hagen Sahm: SeeReal Technologies

FRAUNHOFER INSTITUTE FOR PHOTONIC MICROSYSTEMS IPMS

Maria-Reiche-Straße 2 01109 Dresden Germany

www.ipms.fraunhofer.de

Contents

- Motivation
- Challenges for SLMs in Holography
- Comb drive actuator array
- Complex-valued light modulation
- Summary
- Acknowledgements

Development of Holographic 3D Display Proof-of-Concept

EU Horizon 2020 Project 'REALHOLO', Jan. 2021 ... Dec. 2024

- holography has been a fascinating prospect for a long time
- the data volume is generally huge
- by restriction to small viewing windows real holography becomes feasible
- light modulators need to be developed

- REALHOLO main target: real time holographic automotive 3D head up display
- only real holography can provide a fully natural viewing experience with the image content correctly placed in 3D

Peter Duerr / MST-Kongress 10.11.2021

Challenges for SLMs in Holography

- very many pixels
- pixels as small as possible for large diffraction angle (\rightarrow low drive voltage)
- phase modulation is better than intensity modulation
- analogue modulation of light
 - binary modulation is inferior, pulse width modulation not feasible
- → DLP-SLMs are sub-optimal
- high frame rates
- high precision, stable deflection, low cross-talk
- \rightarrow LCoS-SLMs are sub-optimal
- additional advantage: micro mirrors are independent from polarization
- low power dissipation
- ightarrow analogue piston mirror SLMs are perfect for holography, but development is needed

RealHolo MMA Key Parameters

the pixel area is divided into 4 subareas which are addressed from the edges

Parallel-Plate Actuators Need Large Actuator Gaps

- Analytical model with linear spring and plate capacitor
- Force equilibrium between $F_m = -k \cdot z$ mechanical force $F_{el} = \frac{\varepsilon_0 A U^2}{2(g-z)^2}$
- Force equilibrium can be solved analytically for deflection curve
- Electrostatic pull-in happens at gap/3
- a maximum deflection of about 60% of the pullin deflection or 20% of the gap can be used
 - non-linear response curve
 - small margin in voltage
 - possible dynamic overshoot

Parallel-Plate Actuators

- deflection needs to be $\lambda/2 \approx 350$ nm for red light
- the actuator gap needs to be at least 1.8µm, which is only twice the pixel width
- due to the large gap the total electrostatic force is small
- and the electrostatic cross-talk is large
 - simulated cross-talk of ~3.5% at one edge
 - would be ~14% for 4 neighbor pixels

Novel Comb Drive Actuator Concept

- comb-drive actuators have no pull-in effect (in direction of intended deflection)
- the actuator gap may be very small → ~10x larger electrostatic forces in spite of electrode small area
- the cross-talk may be very small due to the concentrated electrostatic field around the fingers

Novel Comb Drive Actuator Near Linear Response

additional advantage :

- the response curve can be much closer to linear than for parallel plate actuators
- this gives more deflection precision for given voltage uncertainty
- optimizing parameters are
 - finger thickness
 - zero-voltage vertical comb distance
 - horizontal finger distance
 - bias voltage

response curve

the parallel plate actuator needs to have a much weaker hinge than the comb drive actuator for the same deflection

Possible Issues with Comb Drive Actuator (I)

- the underlying circuitry may directly attract the yoke
 - \rightarrow deviation from desired deflection
 - an electrical shield could again cause pull-in
- isolators may have trapped charges
 → deviation from desired deflection
- small defects in critical areas within metal layers may cause short cuts
 → pixel defect
- small area for connection MEMS to backplane

O Contraction of the second se

Possible Issues with Comb Drive Actuator (II)

- high aspect ratio posts are difficult to fabricate
- for high stator the field between stator and mirror may counteract the deflection
- with pixel voltage on stator an isolation distance is required between pixels → smaller comb circumference and force
- with pixel voltage on yoke floating mirrors or electrostatic cross-talk between mirror edges

some actuator variations that have been considered

Possible Issues with Comb Drive Actuator (III)

 an overlay error or other asymmetry of the combs causes large horizontal force

 \rightarrow tilting mirror or even horizontal pull-in

 a stress gradient in the hinge may cause tilted actuators and mirrors and changes the finely tuned actuator response

Optimized Comb Drive Actuator for Holography

optimized basic concept of the comb drive actuator

- two hinges make for a parallelogram guidance mechanism for tilt suppression
- baseplate, lower hinge, and yoke are on the same electrical potential

 \rightarrow no charging expected here

- stator, upper hinge and mirror are on the same electrical potential
 → no charging and no cross-talk at mirror edges
- low risk of shortcuts in insulating posts

Complex-Valued Light Modulation

- a birefringent crystal can combine polarized light from two phase modulating pixels
- the combined light can thus be set to any desired phase and amplitude
- the computation is direct (not iterative), the effort is small and suitable for real time

Retarder and Packaging

- a very precise alignment of retarder stripes to pixel rows is required
- the retarder will be mounted directly on the SLM

packaging exploded view

 this additionally protects the micro mirrors

Summary

- Fraunhofer IPMS, SeeReal, and partners are developing an MMA-based SLM optimized for real holographic displays
- the SLM features millions of comb-drive actuators for precise positioning of micro mirrors
- the SLM will exhibit optical properties superior to existing alternatives
- the high quality of the modulated light will allow a natural viewing experience in AR, VR, and MR applications

Acknowledgement

further RealHolo Project Consortium Partners:

The **REALHOLO** project receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No **101014977**. This project is an initiative of the Photonics Public Private Partnership.

